Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.12.548617

ABSTRACT

The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 has led to increased sampling of related sarbecoviruses circulating primarily in horseshoe bats. These viruses undergo frequent recombination and exhibit spatial structuring across Asia. Employing recombination-aware phylogenetic inference on bat sarbecoviruses, we find that the closest-inferred bat virus ancestors of SARS-CoV and SARS-CoV-2 existed just ~1-3 years prior to their emergence in humans. Phylogeographic analyses examining the movement of related sarbecoviruses demonstrate that they traveled at similar rates to their horseshoe bat hosts and have been circulating for thousands of years in Asia. The closest-inferred bat virus ancestor of SARS-CoV likely circulated in western China, and that of SARS-CoV-2 likely circulated in a region comprising southwest China and northern Laos, both a substantial distance from where they emerged. This distance and recency indicate that the direct ancestors of SARS-CoV and SARS-CoV-2 could not have reached their respective sites of emergence via the bat reservoir alone. Our recombination-aware dating and phylogeographic analyses reveal a more accurate inference of evolutionary history than performing only whole-genome or single gene analyses. These results can guide future sampling efforts and demonstrate that viral genomic fragments extremely closely related to SARS-CoV and SARS-CoV-2 were circulating in horseshoe bats, confirming their importance as the reservoir species for SARS viruses.


Subject(s)
Severe Acute Respiratory Syndrome
2.
Nathaniel L Matteson; Gabriel W Hassler; Ezra Kurzban; Madison A Schwab; Sarah A Perkins; Karthik Gangavarapu; Joshua I Levy; Edyth Parker; David Pride; Abbas Hakim; Peter De Hoff; Willi Cheung; Anelizze Castro-Martinez; Andrea Rivera; Anthony Veder; Ariana Rivera; Cassandra Wauer; Jacqueline Holmes; Jedediah Wilson; Shayla N Ngo; Ashley Plascencia; Elijah S Lawrence; Elizabeth W Smoot; Emily R Eisner; Rebecca Tsai; Marisol Chacon; Nathan A Baer; Phoebe Seaver; Rodolfo A Salido; Stefan Aigner; Toan T Ngo; Tom Barber; Tyler Ostrander; Rebecca Fielding-Miller; Elizabeth H Simmons; Oscar E Zazueta; Idanya Serafin-Higuera; Manuel Sanchez-Alavez; Jose L Moreno-Camacho; Abraham Garcia-Gil; Ashleigh R Murphy Schafer; Eric McDonald; Jeremy Corrigan; John D Malone; Sarah Stous; Seema Shah; Niema Moshiri; Alana Weiss; Catelyn Anderson; Christine M Aceves; Emily G Spencer; Emory C Hufbauer; Justin J Lee; Karthik S Ramesh; Kelly N Nguyen; Kieran Saucedo; Refugio Robles-Sikisaka; Kathleen M Fisch; Steven L Gonias; Amanda Birmingham; Daniel McDonald; Smruthi Karthikeyan; Natasha K Martin; Robert T Schooley; Agustin J Negrete; Horacio J Reyna; Jose R Chavez; Maria L Garcia; Jose M Cornejo-Bravo; David Becker; Magnus Isaksson; Nicole L Washington; William Lee; Richard S Garfein; Marco A Luna-Ruiz Esparza; Jonathan Alcantar-Fernandez; Benjamin Henson; Kristen Jepsen; Beatriz Olivares-Flores; Gisela Barrera-Badillo; Irma Lopez-Martinez; Jose E Ramirez-Gonzalez; Rita Flores-Leon; Stephen F Kingsmore; Alison Sanders; Allorah Pradenas; Benjamin White; Gary Matthews; Matt Hale; Ronald W McLawhon; Sharon L Reed; Terri Winbush; Ian H McHardy; Russel A Fielding; Laura Nicholson; Michael M Quigley; Aaron Harding; Art Mendoza; Omid Bakhtar; Sara H Browne; Jocelyn Olivas Flores; Diana G Rincon Rodriguez; Martin Gonzalez Ibarra; Luis C Robles Ibarra; Betsy J Arellano Vera; Jonathan Gonzalez Garcia; Alicia Harvey-Vera; Rob Knight; Louise C Laurent; Gene W Yeo; Joel O Wertheim; Xiang Ji; Michael Worobey; Marc A Suchard; Kristian G Andersen; Abraham Campos-Romero; Shirlee Wohl; Mark Zeller.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.14.23287217

ABSTRACT

The maturation of genomic surveillance in the past decade has enabled tracking of the emergence and spread of epidemics at an unprecedented level. During the COVID-19 pandemic, for example, genomic data revealed that local epidemics varied considerably in the frequency of SARS-CoV-2 lineage importation and persistence, likely due to a combination of COVID-19 restrictions and changing connectivity. Here, we show that local COVID-19 epidemics are driven by regional transmission, including across international boundaries, but can become increasingly connected to distant locations following the relaxation of public health interventions. By integrating genomic, mobility, and epidemiological data, we find abundant transmission occurring between both adjacent and distant locations, supported by dynamic mobility patterns. We find that changing connectivity significantly influences local COVID-19 incidence. Our findings demonstrate a complex meaning of 'local' when investigating connected epidemics and emphasize the importance of collaborative interventions for pandemic prevention and mitigation.


Subject(s)
COVID-19
3.
Idowu Bolade Olawoye; Paul Eniola Oluniyi; Edyth Parker; Judith Uche Oguzie; Jessica Nnenna Uwanibe; Tolulope Adeyemi Kayode; Fehintola Victoria Ajogbasile; Testimony Jesupamilerin Olumade; Philomena Eromon; Priscilla Abechi; Tope Sobajo; Chinedu Ugwu; George Uwem; Femi Ayoade; Kazeem Akano; Oluwasemilogo Oluwasekunolami Akinlo; Julie Oreoluwa Akin-John; Nicholas Oyejide; Olubukola Ayo-Ale; Benjamin Adegboyega; Grace Chizaramu Chukwu; Ayomide Adeleke; Grace Opemipo Ezekiel; Farida Brimmo; Olanrewaju Odunyemi Fayemi; Iyanuoluwa Fred-Akintunwa; Ibrahim F. Yusuf; Testimony Oluwatise Ipaye; Oluwagboadurami John; Ahmed Iluoreh Muhammad; Deborah Chisom Nwodo; Olusola Akinola Ogunsanya; Johnson Okolie; Abolade Esther Omoniyi; Iyobosa Beatrice Omwanghe; Oludayo Oluwaseyi Ope-ewe; Shobi Otitoola; Kemi Adedotun-Suleiman; Courage Philip; Mudasiru Femi Saibu; Ayotunde Elijah Sijuwola; Christabel Anamuma Terkuma; Augustine Abu; Johnson Adekunle Adeniji; Moses Olubusuyi Adewunmi; Olufemi Oluwapelumi Adeyemi; Rahaman Ahmed; Anthony Ahumibe; Anthony Nnennaya Ajayi; Olusola Akanbi; Olatunji Akande; Monilade Akinola; Afolabi Akinpelu; George Akpede; Ekanem Anieno; Antjony E. Atage; Oyeronke Ayansola; Marycelin Baba; Olajumoke Babatunde; Bamidele Soji Oderinde; Ebo Benevolence; Osiemi Blessing; Mienye Bob-Manuel; Andrew Bock-Oruma; Aire Chris; Chimaobi Chukwu; Funmi Daramola; Adomeh Donatus; Rosemay Duruihuoma; Yerumoh Edna; Matthew Ekeh; Erim Ndoma; Richard Ewah; Akinwumi Fajola; Enoch Olowatosin Fakayode; Adeola Fowotade; Galadima Gadzama; Daniel Igwe; Odia Ikponmwosa; Rafiu Olasunkanmi Isamotu; Agbukor Jacqueline; Aiyepada John; Julie Johnson Ekpo; Ibrahim Kida; Nwando Mba; Airende Micheal; Mirabeau Youtchou Tatfeng; Worbianueri Beatrice Moore-Igwe; Anietie Moses; Okonofua Naregose; Nsikak-Abasi Ntia; Ifeanyi Nwafor; Elizabeth Odeh; Ephraim Ogbaini; Kingsley Chiedozie Ojide; Sylvanus Okogbenin; Peter Okokhere; Sylvanus Okoro; Azuka Okwuraiwe; Olisa Olasunkanmi; Oluseyi Olayinka; Adesuyi Omoare; Ewean Chukwuma Omoruyi; Hannah E. Omunakwe; Emeka Onwe Ogah; Chika Onwuamah; Venatious Onyia; Akhilomen Patience; Ebhodaghe Paulson; Omiunu Racheal; Esumeh Rita; Giwa Rosemary; Joseph Shaibu; Joseph Shaibu; Ehikhametalor Solomon; Ngozi Ugwu; Collins Nwachi Ugwu; Kingsley Ukwuaja; Zara Wudiri; Nnaemeka Ndodo; Brittany Petros; Bronwyn Mcannis; Cyril Oshomah; Femi Oladiji; Katherine J. Siddle; Rosemary Audu; Babatunde Lawal Salako; Stephen Schaffner; Danny Park; Ifedayo Adetifa; Chikwe Ihekweazu; Oyewale Tomori; Anise Nkenjop Happi; Onikepe Folarin; Kristian G. Andersen; Pardis C. Sabeti; Christian Tientcha Happi.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.24.22280269

ABSTRACT

Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the B.1.1.318 and B.1.525 variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Our results show how regional connectivity in downsampled regions like Africa can often influence virus transmissions between neighbouring countries. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission in the region, generating actionable information for public health decision makers in the region.

4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.20.22275319

ABSTRACT

Background Genomic surveillance is essential for monitoring the emergence and spread of SARS-CoV-2 variants. SARS-CoV-2 diagnostic testing is the starting point for SARS-CoV-2 genomic sequencing. However, testing rates in many low- and middle-income countries (LMICs) are low (mean = 27 tests/100,000 people/day) and global testing rates are falling in the post-crisis phase of the pandemic, leading to spatiotemporal biases in sample collection. Various public health agencies and academic groups have produced recommendations on sample sizes and sequencing strategies for effective genomic surveillance. However, these recommendations assume very high volumes of diagnostic testing that are currently well beyond reach in most LMICs. Methods To investigate how testing rates, sequencing strategies and the degree of spatiotemporal bias in sample collection impact variant detection and monitoring outcomes, we used an individual-based model to simulate COVID-19 epidemics in a prototypical LMIC. Within the model, we simulated a range of testing rates, accounted for likely testing demand and applied various genomic surveillance strategies, including sentinel surveillance. Findings Diagnostic testing rates play a substantially larger role in monitoring the prevalence and emergence of new variants than the proportion of samples sequenced. To enable timely detection and monitoring of emerging variants, programs should achieve average testing rates of at least 100 tests/100,000 people/day and sequence 5-10% of test-positive specimens, which may be accomplished through sentinel or other routine surveillance systems. Under realistic assumptions, this averages to ~10 samples for sequencing/1,000,000 people/week. Interpretation For countries where testing capacities are low and sample collection is spatiotemporally biased, surveillance programs should prioritize investments in wider access to diagnostic testing to enable more representative sampling, ahead of simply increasing quantities of sequenced samples. Funding European Research Council, the Rockefeller Foundation, and the Governments of Germany, Canada, UK, Australia, Norway, Saudi Arabia, Kuwait, Netherlands and Portugal.


Subject(s)
COVID-19 , Kallmann Syndrome
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.15.22273909

ABSTRACT

Background. Monitoring the emergence and spread of SARS-CoV-2 variants is an important public health objective. Travel restrictions, aimed to prevent viral spread, have major economic consequences and unclear effectiveness despite considerable research. We investigated the introduction and establishment of the Gamma variant in New York City (NYC) in 2021. Methods. We performed phylogeographic analysis on 15,967 Gamma sequences available on GISAID and sampled between March 10th through May 1st, 2021, to identify geographic sources of Gamma lineages introduced into NYC. We identified locally circulating Gamma transmission clusters and inferred the timing of their establishment in NYC. Findings. We identified 16 phylogenetically-distinct Gamma clusters established in NYC (cluster sizes ranged 2-108 genomes). Most of the NYC clusters were introduced from Florida and Illinois; only one was introduced from outside the United States (US). By the time the first Gamma case was reported by genomic surveillance in NYC on March 10th, the majority (57%) of circulating Gamma lineages had already been established in the city for at least two weeks. Interpretation. Despite the expansion of SARS-CoV-2 genomic surveillance in NYC, there was a substantial gap between Gamma variant introduction and establishment in January/February 2021, and its identification by genomic surveillance in March 2021. Although travel from Brazil to the US was restricted from May 2020 through the end of the study period, this restriction did not prevent Gamma from becoming established in NYC as most introductions occurred from domestic locations.

6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.27.22269922

ABSTRACT

Regional connectivity and land-based travel have been identified as important drivers of SARS-CoV-2 transmission. However, the generalizability of this finding is understudied outside of well-sampled, highly connected regions such as Europe. In this study, we investigated the relative contributions of regional and intercontinental connectivity to the source-sink dynamics of SARS-CoV-2 for Jordan and the wider Middle East. By integrating genomic, epidemiological and travel data we show that the source of introductions into Jordan was dynamic across 2020, shifting from intercontinental seeding from Europe in the early pandemic to more regional seeding for the period travel restrictions were in place. We show that land-based travel, particularly freight transport, drove introduction risk during the period of travel restrictions. Consistently, high regional connectivity and land-based travel also disproportionately drove Jordan's export risk to other Middle Eastern countries. Our findings emphasize regional connectedness and land-based travel as drivers of viral transmission in the Middle East. This demonstrates that strategies aiming to stop or slow the spread of viral introductions (including new variants) with travel restrictions need to prioritize risk from land-based travel alongside intercontinental air travel to be effective.

7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.21.21268143

ABSTRACT

As SARS-CoV-2 becomes an endemic pathogen, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

SELECTION OF CITATIONS
SEARCH DETAIL